Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 118: 104432, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33853036

RESUMO

OBJECTIVES: Bovine pericardium - native, fixed as well as decellularized - is one of the most common implant materials in modern cardiovascular surgery. Although used in everyday procedures, there are no recommendations in regard to which part of the pericardium to prefer. It was the aim of this study, to identify areas of the pericardium with consistent properties and high durability. METHODS: Fresh bovine pericardia were collected from a local slaughterhouse. The native pericardia were analyzed at 140 spots in regard to thickness and fiber orientation. Based on these results, five promising areas were selected for further evaluation. The pericardia were decellularized with detergents (0.5% sodiumdesoxycholate/0.5% sodiumdodecylsulfate) and subsequently incubated in DNAse. The two investigation groups native und DC consisted of 20 samples each. The efficiency of the decellularization was evaluated by DNA quantification, as well as DAPI and H&E staining. Biomechanical properties were determined using uniaxial tensile tests. To evaluate the microstructure, scanning electron microscopy, Picrosirius Red- and Movat's Pentachrome staining were utilized. To assess the long-term durability, patches were tested in a high-cycle system for a duration equaling the stress of three months in-vivo. Commercially available, fixed pericardium patches served as control group. RESULTS: Only a limited part of the pericardium showed a homogenous and usable thickness. The decellularization removed all cell nuclei, proven by negative DAPI and H&E staining, and also significantly reduced the DNA amount by 84%. The mechanical testing revealed that two investigated areas had an inconsistent tensile strength. Microscopical observations showed that the integrity of the extracellular matrix did not suffer by the decellularization procedure. During the long-term testing, most of the pericardia slowly lost tautness, though none of them got measurably damaged. Especially one area showed no decline of tensile strength after durability testing at all. Decellularized patches and fixed patches achieved comparable results in mechanical testing and microscopical evaluation after the durability testing. CONCLUSION: We could clearly document significant, location-based differences within single pericardia. Only one area showed consistent properties and a high durability. We highly recommend taking this into account for future implant material selections.


Assuntos
Bioprótese , Engenharia Tecidual , Animais , Bovinos , Teste de Materiais , Pericárdio , Alicerces Teciduais
2.
Oncotarget ; 8(42): 72584-72596, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069811

RESUMO

ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, is an important regulator of endothelial cell proliferation and cell survival. The protease controls vital cellular functions through cleavage of growth factors, cytokines and their receptors including transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α) and TNF-α receptor 1 (TNFR1). TNF-α is the major inducer of endothelial cell death in cardiovascular diseases. The latter are also characterized by elevated plasma and tissue levels of extracellular sphingomyelinase (SMase). Whether the SMase affects ADAM activity and thus endothelial cell function has not been addressed to date. Here, we analyzed the effect of SMase on ADAM17-mediated shedding in COS7 cells and in human umbilical vein endothelial cells (HUVECs). Exposure to SMase significantly increased ADAM17-mediated release of alkaline-phosphatase (AP)-tagged TGF-α in COS7 cells and shedding of endogenously expressed TNFR1 in HUVECs. We previously presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase function. We found that SMase treatment led to PS externalization in both cell types. Transient non-apoptotic PS exposure is often mediated by Ca2+-dependent phospholipid scramblases. Accordingly, the Ca2+-chelator EGTA markedly reduced the breakdown of phospholipid asymmetry and shedding of TGF-α and TNFR1. Moreover, sheddase activity was significantly diminished in the presence of the competing PS-headgroup OPLS. SMase-stimulated TNFR1 shedding strikingly diminished TNF-α-induced signalling cascades and endothelial cell death. Taken together, our data suggest that SMase activity might act as protective factor for endothelial cells in cardiovascular diseases.

3.
Nat Commun ; 7: 11523, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161080

RESUMO

ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.


Assuntos
Proteína ADAM17/metabolismo , Fosfatidilserinas/metabolismo , Proteína ADAM17/química , Proteína ADAM17/deficiência , Proteína ADAM17/genética , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/genética , Linhagem Celular , Ativação Enzimática , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Meliteno/farmacologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Domínios Proteicos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...